Final Erosion Control Plan Campus Drive Relocation Project

by

Noboru Togawa

Presented to: Dr. Pitt Construction Site Erosion Control

Department of Civil, Construction, and Environmental Engineering The University of Alabama Tuscaloosa, AL 35486

August 9, 2007

Conte	nts	. i
List of	Figures	iii
List of	Tables	iii
1.0	Introduction	1
1.1	Summary	1
1.2	Objectives	1
2.0	Construction Site Description	1
2.1	Campus Drive Relocation Project General Information	1
2.2	Topography	3
2.3	Drainage Patterns	3
2.4	Soils	3
2.5	Ground Cover	4
2.6	Adjacent Property	4
2.7	Receiving Waters	4
3.0	Construction Work Phases	4
3.1	Phase 1 Improvement	4
3.2	Existing Campus Drive and Hackberry Lane intersection	5
3.3	Phase 2 Improvement	
4.0	Hazard Map (Appendix 2)	5
5.0	Watershed analysis	
5.1	Watershed delineation	5
5.2	Peak runoff rate for the 25 year storm (Appendix 3)	7
5.3	Erosion and Sediment Control for the site	
6.0	RUSLE Calculation (Appendix 4)	7
6.1	Phase 1 Improvement	
6.2	Phase 2 Improvement and Campus and Hackberry X-section	7
6.3	After Active Construction and All Land Covered	
7.0	Temporary and Permanent Erosion Control Plan	8
7.1	Temporary Erosion Control Plan	
7.2	Permanent Erosion Control Plan	8
8.0	Channel design calculation (Appendix 5)	8
9.0	Slope protection (Appendix 5)	8
10.0	Pond design calculation (Appendix 6)	9
10.1		
11.0	Filter fence design (Appendix 6)1	0
11.1		
11.2	2 Expected silt fence performance for Phase 1 Improvement	2
11.3		
and	Hackberry X-section	
	Expected silt fence performance for after active construction and all lan	
	ered1	
12.0	Recommendation1	
13.0	Conclusion1	
Refere	ences1	3

Contents

Appendix 1: Construction schedule for the site work	14
Appendix 2: Hazard map	17
Appendix 3: Peak runoff calculation by Win TR55	20
Appendix 4: RUSLE calculation	29
14.0 RUSLE Calculation	30
14.1 Phase 1 Improvement	30
14.2 Phase 2 Improvement and Campus and Hackberry X-section	30
14.3 After Active Construction and All Land Covered	31
Appendix 5: Channel design and slope protection	32
15.0 Channel design calculation	33
16.0 Slope protection	35
Appendix 6: Pond design and filter fence design	38
17.0 Pond design calculation	39
17.1 Basic pond area and "live" storage volume	39
17.2 Top surface area and side slope	39
17.3 Selection of primary outlet device	39
17.4 Sacrificial drainage volume	40
17.5 Selection of emergency spillway	40
17.6 Final pond profile	
18.0 Filter fence design	
18.1 Location and type of the fence	42
18.2 Expected silt fence performance for Phase 1 Improvement	42
18.3 Expected silt fence performance for Phase 2 Improvement and Camp	us
and Hackberry X-section	43
18.4 Expected silt fence performance for after active construction and all la	nd
covered	44

List of Figures

Figure 1: Campus Drive Relocation Project Aerial Image	2
Figure 2: Campus Drive Relocation Project Location Map	2
Figure 3: Soil Type of the Construction Site	3
Figure 4: Watershed for the site (source: TerraServer)	6
Figure 5: Pond final profile	9
Figure 6: Filter fence location	.11
Figure 7: Construction Schedule	.15
Figure 8: Construction Schedule cont.	.16
Figure 9: Hazard Map (left column: initial and right column: final topography) Figure 10: Hazard Map cont. (left column: initial and right column: final	.18
topography)	.19
Figure 11: Output Hydrograph (source: WinTR-55)	.21
Figure 12: Cross section of the channel	.33
Figure 13: Channel design and lining selection by North American Green	
software	.35
Figure 14: Slope protection by North American Green software	.37
Figure 15: Pond final profile	.42

List of Tables

Table 1: Soil Survey	4
Table 2: Pond final profile	
Table 3: RUSLE Calculation for December 15, 2006 to May 3, 2007	30
Table 4: RUSLE Calculation for May 14, 2007 to July 27, 2007	31
Table 5: RUSLE Calculation for July 30, 2007 to August 6, 2007	31
Table 6: Channel design and lining selection	34
Table 7: Pond surface area and water quality volume	39
Table 8: Top surface area and side slope	39
Table 9: Top sediment storage area (bottom of the scour protection zone)	40
Table 10: Bottom area and side slope	40
Table 11: Emergency spillway	41
Table 12: Pond final profile	41
Table 13: Phase 1 soil runoff with and without the fence	43
Table 14: Phase 2 Improvement and Campus & Hackberry X-Section soil rund	off
with and without the fence	43
Table 15: After active construction and all land covered soil runoff with and	
without the fence	44

1.0 Introduction

1.1 Summary

This document describes the erosion control plan for the Campus Drive Relocation Project which is planed at the University of Alabama Campus.

1.2 Objectives

The objective of this document is as follows.

- 1. Describe the site information including location, topography, soils, ground cover, adjacent properties, and receiving waters.
- 2. Describe the work phases.
- 3. Describe the hazardous potential at the site considering slopes.
- 4. Determine the hydrologic characteristics.
- 5. Calculate the soil loss by using RUSLE equation.
- 6. Determine the appropriate temporal and permanent plan.
- 7. Design channels and slope protection.
- 8. Design a temporary detention pond for sediment control.

2.0 Construction Site Description

2.1 Campus Drive Relocation Project General Information

Campus Derive Relocation Project is planned for the University of Alabama Campus on Campus Drive between Hackberry and Jefferson Avenue. The development and expansion of the northern portion of campus has created a need to improve the current roadway system. The construction is planned to relocate Hackberry Lane between Margaret and Riverside as well as the creation of new loop around Shelby Hall and service road to access facilities. The nearby receiving water, Black Warrior River is located north of the construction site. Figure 1 and Figure 2 describes the aerial image and the location of the project.

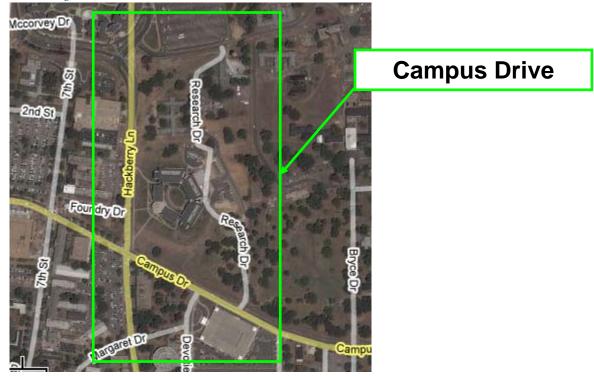


Figure 1: Campus Drive Relocation Project Aerial Image

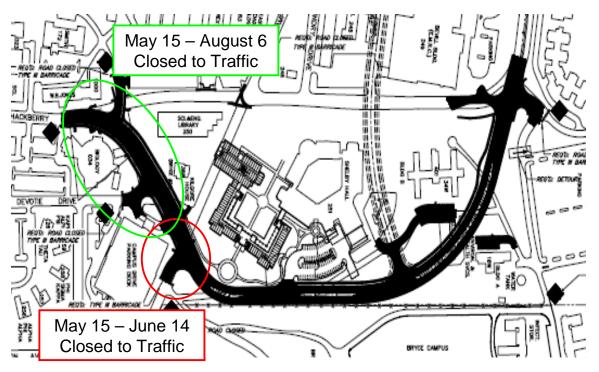


Figure 2: Campus Drive Relocation Project Location Map

2.2 Topography

The site has approximately 65 acres. New campus drive will relocate Hackberry Lane between Margaret and Riverside and it will provide the loop around Shelby Hall and service road to access facilities. The site will be levelled to approximately elevation of 220 ft. North area of the construction site is located at the relatively high slope land compared with south area. Thus, north area will require well maintained erosion control plan. East and west side do not have steep slope, but there are many existing inlets which have to be protected. Total construction period is approximately 9 months.

2.3 Drainage Patterns

The drainage basin for the site is approximately 65 acres. The construction site is located at the centre of the drainage area. The large amount of the flow is caught by the existing gutters and inlets and transported to the Black Warrior River, located approximately 1500 ft north of the construction site.

2.4 Soils

United States Department of Agriculture describes that the 97% of soil in this area is Bama-Urban land complex which is made from loamy marine deposits derived from sedimentary rock. These soils belong to the hydrologic group of B. Other 3% of soils consist of Shatta-Urban land complex which belong to the hydrologic group of C. Lest of 2% soils are hydrologic group B of Smithdale fine sandy loam. Figure 3 describes the soil type of the construction area. Also, Table 1 describes the detail information for the soil which is required for RUSLE calculation.

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
7	Bama-Urban land complex, 0 to 2 percent slopes	0.3	0.4%
8	Bama-Urban land complex, 2 to 6 percent slopes	59.1	96.6%
31	Shatta-Urban land complex, 0 to 2 percent slopes	0.5	0.8%
33	Smithdale fine sandy loam, 6 to 15 percent slopes	1.3	2.1%
Totals for Area o (AOI)	f Interest	61.1	100.0%

Figure 3: Soil Type of the Construction Site

Soil Number	Depth (in)	Hydrologic Soil Group	Permiability (in/hr)	Erodibility Factor K	Tolerable Soil Loss T (tons/ac/yr)	
	0-5		0.6-6.0	0.24		
7,8 (Bama Urban land)	5-54	В	0.6-2.0	0.32	5	
	54-72		0.6-2.0	0.32		
	0-7	с	0.6-2.0	0.37		
31 (Shatta Urban land)	7-28		C C	0.2-0.6	0.37	3
	28-60		0.06-0.2	0.37		
	0-5		2.0-6.0	0.28		
38 (Smithdale)	5-42	В	0.6-2.0	0.24	5	
	42-72		2.0-6.0	0.28		

Table 1: Soil Survey

2.5 Ground Cover

The ground cover over the site ranges from bare soils to matured trees. North side of the construction site is mostly covered by the glasses and small trees as well as the small areas of bare soils. East side is well vegetated and it is covered with relatively large trees and glasses. Shelby Hall is located on west side which has undisturbed ground covered with small trees and glasses. Major roads and buildings are located at south side which crates a large impervious area.

2.6 Adjacent Property

North side is newly developed residential buildings with a large parking lot. East side is covered with matured trees and glasses, so there will be less impact by the construction erosion. Western side is the campus building with a yard covered with small trees and glasses. South side is consisting of campus facilities and roads.

2.7 Receiving Waters

Black Warrior River is located approximately 1500 ft north of the construction site. Storm Water will be collected by the existing gutters and inlets and carried to the river by the pipes.

3.0 Construction Work Phases

3.1 Phase 1 Improvement

The first phase improvement starts from the north of the Hackberry Lane to the intersection of the new campus drive and the existing campus drive. The construction starts from clearing and grubbing, installation of the temporary access and parking to the site, and the demolition of the existing facilities. Erosion control and traffic control are done before the earthwork for the site and the sanitary sewer, storm sewer, water main, electrical line are installed. After that the curb, gutter, and sidewalks are constructed. Then the road is installed starting from the landscaping, base settlement, and paving. Finally striping and road signs are installed. After the completion of the road, parking

lots for the Mcmillan and Environmental Health and Safety are constructed. After the tie-in of North Hackberry intersection, the road is opened for the traffic.

3.2 Existing Campus Drive and Hackberry Lane intersection

This phase is planned to start at the same time with the phase 2 improvement. Intersection of the existing Campus Drive and Hackberry lane are constructed. The work consists of the demolition of the existing facilities and the earth work. Then curb, gutter and sidewalks are installed. The intersection is completed by the paving, striping, and signage.

3.3 Phase 2 Improvement

The second phase improvement starts from the existing campus drive and the new campus drive constructed in the phase 1 improvement. The construction starts from clearing and grubbing, and the demolition of the existing facilities. Erosion control and traffic control are prepared before the earthwork for the site and the storm sewer, water main, and electrical line are installed. After that the curb, gutter, and sidewalks are constructed. Then the road construction is started from the landscaping, base and paving. Then, striping is done and road signs are installed. After the completion of the road, East Engineering Parking Lot is constructed. The road is opened for the traffic and the project is closed with the clean up for the site. Construction schedule for the site work is attached in Appendix 1.

4.0 Hazard Map (Appendix 2)

Hazardous maps are attached in Appendix 2 for the initial topography (left column) and the final topography (right column). Left column and right column figures are the same locations of the construction sites. Pink colour describes the low hazardous area (slope <2.0%), blue colour describes the moderate hazardous area (slope 2-5%), yellow colour describes high hazardous area (slope 5-10%), and orange colour describes high hazardous area (slope >10%). After the completion of the road, high hazardous areas are reduced, but it still requires other erosion control practice for the remaining high slope area.

5.0 Watershed analysis

5.1 Watershed delineation

Figure 4 shows sub-drainages for the upslope, down-slope, and on-site areas for the construction site. Red line indicates the watershed area for the site and the pink line subdivides them into upstream (U1-U4), onsite (O1-O5), and downstream (D1) areas. Blue line shows the flow pass for the area and the proposed location of the pond is marked in the figure with a blue circle. The watershed area has approximately 63 acres.

CE585 Construction Site Erosion and Sediment Control July 19, 2007 Noboru Togawa

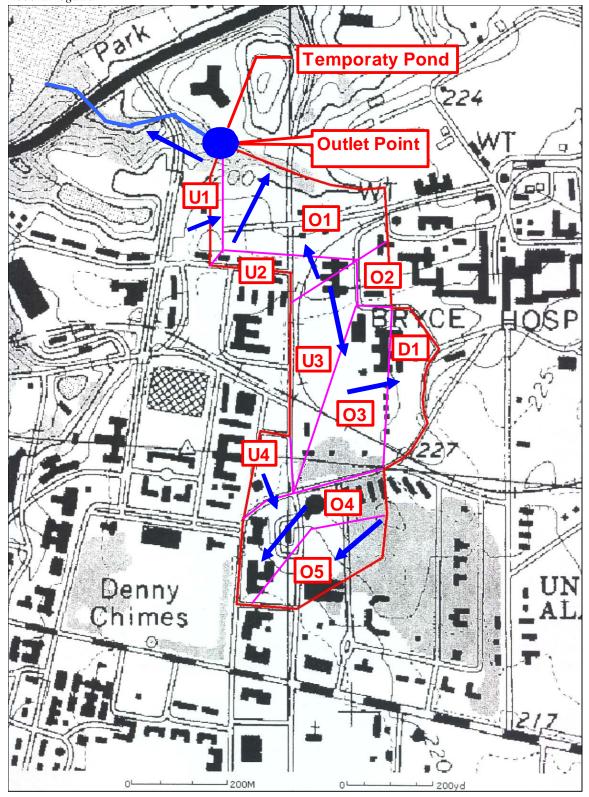


Figure 4: Watershed for the site (source: TerraServer)

5.2 Peak runoff rate for the 25 year storm (Appendix 3)

All calculations are done by Win TR55 for the peak runoff calculation. Soil type is determined by United States Department of Agriculture Web Soil Survey, described in Table 1 and Figure 3. The peak runoff is determined to 241.47 cubic feet per second at 12.20 hrs later for the 25 year storm. Detail information including the plot is attached in Appendix 3.

5.3 Erosion and Sediment Control for the site

Silt fences have been used at all side slopes and down slope edges of the construction site and existing inlets have been protected by silt fences and wattles. The intersection of the existing road and the new road is closed and protected by two lines of wattles in order to prevent a sediment runoff from the disturbed area. The construction site is located lower area compared with surroundings, so it has less erosion problem. Final plans for the site cover consist of asphalt road, parking lots, landscaping and sod at the entrance of parking lots as well as the area along with the newly constructed road.

6.0 RUSLE Calculation (Appendix 4)

6.1 Phase 1 Improvement

The first phase improvement has been started from December 15th 2006 to May 3rd 2007 which includes the 4 active construction areas and 7 undisturbed areas including the site for Phase 2 improvement. The total soil loss on the site for this period was estimated in 3313 tons. The annual rainfall energy R was estimated as 375 and the erosion index of 29% is estimated to affect the erosion considering the location and the period of phase 1 improvement. The credibility factor K is determined from the information of Table 1 considering that at least 5 inch of the top soil will be removed before the construction. The cover factor C has estimated as 0.001 for undisturbed and well protected areas as well as 1.0 for active construction areas. Detail calculation is attached in Appendix 4.

6.2 Phase 2 Improvement and Campus and Hackberry X-section

Site is currently the second phase improvement and it has been started from May 14th 2007 to July 27th 2007 which includes the 4 active construction areas and 7 undisturbed areas including the site completed during the phase 1 improvement. The total soil loss on the site for this period was estimated in 1701 tons. The annual rainfall energy R was estimated as 375 and the erosion index of 26% is estimated to affect the erosion. The credibility factor K is determined from the information of Table 1 considering that at least 5 inch of the top soil will be removed before the construction. The cover factor C has estimated as 0.001 for undisturbed and well protected areas as well as 1.0 for active construction areas. Detail calculation is attached in Appendix 4.

6.3 After Active Construction and All Land Covered

The soil runoff calculation is for the construction of July $30^{\text{th}} 2007$ to August $6^{\text{th}} 2007$. The entire site is covered after the completion of the construction. The total soil loss on the site for this period was estimated in 1.12 tons. The annual rainfall energy R was estimated as 375 and the erosion index of 7% is estimated to affect the erosion. The

cover factor C has estimated as 0.001 for undisturbed and well protected areas. Detail calculation is attached in Appendix 4.

7.0 Temporary and Permanent Erosion Control Plan

7.1 Temporary Erosion Control Plan

The temporary erosion control plans for the site are stabilized construction entrances, silt fences, and sediment traps. Type "A" silt filter fences are used at all side slopes and down slope edges of the construction site. A stone stabilized pad will be installed at entrance and exit for vehicles at the construction site in order to reduce the transport of mud from the construction area onto public roads by motor vehicles and runoff. This pad should consist of an eight inch layer of Alabama Highway Department No. 1 coarse aggregate. It should be 50 feet long and 20 feet in width for the largest construction vehicle at the site. Sediment filters should be installed at the drop inlets and curb inlets in order to prevent sediment from entering the storm drainage systems during construction and prior to permanent stabilization of the disturbed area. Also, Millet and Rye are suggested by Alabama Soil and Water Conservation Committee as a temporary cover for Central Alabama. Millet can be installed from April 1st to August 15th and Rye will be installed from September 1st to October 15th.

7.2 Permanent Erosion Control Plan

Permanent erosion control plan will be sod. The area for sod should be relatively flat with a slope of 3%. All the area along with the newly constructed road would be suitable for sobbing. Site will be ready for sobbing in August, Bermudagrass or Fescue will be appropriate. The road is located on campus, for landscaping, trees, shrubs and flowers are planted.

8.0 Channel design calculation (Appendix 5)

The site consists of one main channel that diverts water from the upper portion of the watershed. The channel is located at the north side of the watershed area of the construction site. All the required geometry calculations were performed by using excel spread sheet. Detail calculation is attached in Appendix 5.

9.0 Slope protection (Appendix 5)

The site is divided into upstream, onsite, and downstream areas. The slope of the site is categorized into four types including: slope <2.0%, slope 2-5%, slope 5-10%, and slope >10%. The peak flow rates for individual watershed areas were calculated using the WinTR-55. Manning's n is 0.02 for the sandy loam as described above. The site has mainly two work phases and it will require the slope protection for the active construction sites during the construction and between these work phases.

The SC150 mat has a C of 0.11 (intermediate in the above range) and an n of 0.055 for this slope and condition therefore this mat is selected for the slope protection. All detail calculation is attached in Appendix 5.

10.0 Pond design calculation (Appendix 6)

The pond is designed to remove approximately 90% of suspended solids. The pond needs to safely pass the flows from the 25 yr storm. The soil type is described previously. The following are the areas associated with each land use in the drainage area.

- Paved area: 16.66 acres
- Undeveloped area: 17.32 acres
- Construction area: 29.24 acres
- Total site area: 63.22 acres

10.1 Pond profile

Table 2 describes the pond profile and Figure 5 shows the corresponding drawing. Detail calculation is attached in Appendix 6.

Zone	Depth (ft)	Pond Depth from the Bottom (ft)	Surface Area at Depth (acres)	Pond Storage Below Elevation (acre-ft)	Pond Slope Between Elevations (%)
Bottom	0	0	0.71	0	-
Sediment Storage	4	4	0.88	3.18	36
Scour Protection	3	7	1.04	2.88	30
Water Quality Live Storage	2	9	1.85	2.89	5
Emergency Spillway	1	10	2.34	2.10	5
Freeboard	1	11	2.89	2.62	5

Table 2: Pond final profile

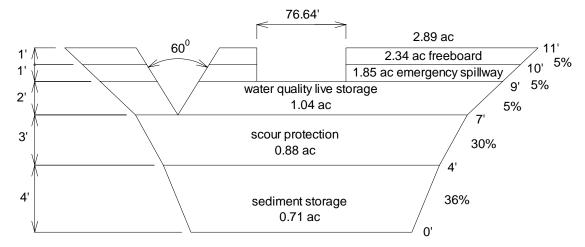


Figure 5: Pond final profile

11.0 Filter fence design (Appendix 6)

The filter fence is expected to remove maximum 50 % of suspended solids. The following section describes the design of filter fences for the site. The fence will be installed all side and down slopes areas.

11.1 Location and type of the fence

The site has a relatively high slope at the edge of the construction site where the fence is planed to install. Based on ground slopes and surrounding facilities, Type "A" silt filter fences are used at all side slopes and down slope edges of the construction site. Figure 6 describes the location of the fence which is shown in the green line in the figure.

CE585 Construction Site Erosion and Sediment Control July 19, 2007 Noboru Togawa

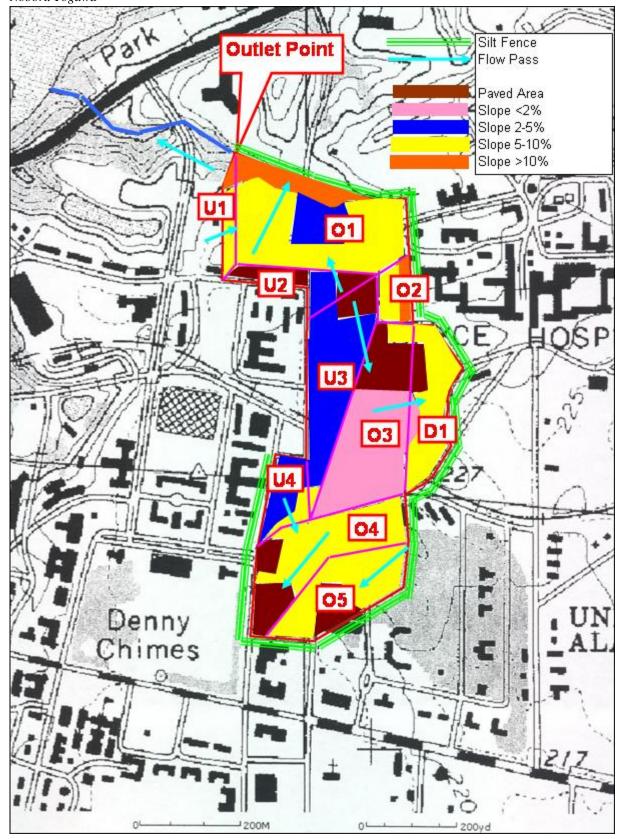


Figure 6: Filter fence location

11.2 Expected silt fence performance for Phase 1 Improvement

The first phase improvement has been started from December 15th 2006 to May 3rd 2007 which includes the 4 active construction areas and 7 undisturbed areas including the site for Phase 2 improvement. The total soil loss on the site for this period was estimated at the previous analysis and it is 3313 tons. After the installation of Type "A" silt filter fence, the estimated soil loss is 1657 tons. Detail calculation is attached in Appendix 6.

11.3 Expected silt fence performance for Phase 2 Improvement and Campus and Hackberry X-section

Site is currently the second phase improvement and it has been started from May 14th 2007 to July 27th 2007 which includes the 4 active construction areas and 7 undisturbed areas including the site completed during the phase 1 improvement. The total soil loss on the site for this period was estimated in 1701 tons at the previous analysis. After the installation of Type "A" silt filter fence, the estimated soil loss is 851 tons. Detail calculation is attached in Appendix 6.

11.4 Expected silt fence performance for after active construction and all land covered

The soil runoff calculation is for the construction of July 30th 2007 to August 6th 2007. The entire site is covered after the completion of the construction. The total soil loss on the site for this period was estimated in 1.12 tons which is analyzed previously. After the installation of Type "A" silt filter fence, the estimated soil loss is 0.71 tons. Detail calculation is attached in Appendix 6.

12.0 Recommendation

The site is located in the middle of the campus; therefore it is necessary to perform a suitable sediment control practice for the stock piles, entrances for the site, and existing inlets in order to keep the campus clean. Sediment filters should be installed at the drop inlets and curb inlets in order to prevent sediment from entering the storm drainage systems during construction and prior to permanent stabilization of the disturbed area. Inspections should be performed at least once every two weeks and following a significant storm event. This allows any changes in site conditions to be observed, and ensure that erosion and sediment controls are effective as designed and approved. Repairs and changes to any erosion control devices should be performed immediately after the inspection in order to prevent sediment runoff.

13.0 Conclusion

This discussion has shown that the use of simple erosion control method can provide an effective water quality benefits such as a stone stabilized pads at the construction entrance, silt fences, and sediment filters for the inlets as well as the vegetation practices. The temporary detention pond is designed at the site and this pond may have a future, used as a permanent pond after the construction. Fitter fences are suitable for much smaller and moderate slope areas, but their maximum expected performance is less. In order to increase the level of protection, it is necessary to combine several erosion control plans at the site.

References

Pitt, R., Clark, E., Shirley, & Lake, D. (2007). Construction Site Erosion and Sediment Controls.

Alabama Soil and Water Conservation Committee. Alabama Handbook for Erosion Control, Sediment Control and Stormwater Management on Construction Sites and Urban Areas. June 2003. Website: http://www.swcc.state.al.us/

Appendix 1: Construction schedule for the site work

Construction site schedule is described in the Figure 7 and Figure 8.

ID	0	Task Name	Duration	Start	Finish
1		PHASE I IMPROVEMENTS	98 days	Fri 12/15/06	Tue 5/1/07
2	~	CLEARING & GRUBBING	21 days	Fri 12/15/06	Fri 1/12/07
3	~	TEMPORARY ACCESS & PARKING	5 days	Mon 12/18/06	Fri 12/22/00
4	~	DEMOLITION	25 days	Mon 12/18/06	Fri 1/19/0
5		EROSION CONTROL	97 days	Mon 12/18/06	Tue 5/1/0
6		TRAFFIC CONTROL	97 days	Mon 12/18/06	Tue 5/1/0
7		EARTHWORK	15 days	Mon 3/12/07	Fri 3/30/0
8	~	SANITARY SEWER	16 days	Mon 1/15/07	Mon 2/5/0
9		STORM SEWER SYSTEM	60 days	Mon 1/22/07	Fri 4/13/0
10		WATER MAIN INSTALLATION	52 days	Wed 2/21/07	Thu 5/3/0
11		ELECTRICAL / SITE LIGHTING	30 days	Mon 3/12/07	Fri 4/20/0
12		CURB & GUTTER / SIDEWALKS	15 days	Mon 4/2/07	Fri 4/20/0
13		LANDSCAPING	1 day	Mon 4/23/07	Mon 4/23/0
14		BASE & PAVING	13 days	Mon 4/9/07	Wed 4/25/0
15		STRIPING & SIGNAGE	4 days	Thu 4/26/07	Tue 5/1/0
16		MCMILLIAN & ENV. HEALTH PARKING LOTS	50 days	Mon 2/12/07	Fri 4/20/0
17		NORTH HACKBERRY X-SECTION TIE-IN	13 days	Mon 4/16/07	Wed 5/2/0
18	1	OPEN TRAFFIC PHASE I	1 day	Thu 5/3/07	Thu 5/3/0
19					
20		CAMPUS & HACKBERRY X-SECTION	16 days	Mon 5/14/07	Mon 6/4/0
21		DEMOLITION / EARTHWORK	5 days	Mon 5/14/07	Fri 5/18/0
22		CURB & GUTTER / SIDEWALKS	6 days	Fri 5/18/07	Fri 5/25/0
23		BASE & PAVING	8 days	Mon 5/21/07	Wed 5/30/0

Figure 7: Construction Schedule

ID	0	Task Name	Duration	Start	Finish
24	11	STRIPING & SIGNAGE	1 day	Fri 6/1/07	Sat 6/2/07
25		OPEN TRAFFIC	1 day	Mon 6/4/07	Mon 6/4/07
26					
27		PHASE II IMPROVEMENTS	61 days	Mon 5/14/07	Mon 8/6/07
28		CLEARING & GRUBBING	10 days	Mon 5/14/07	Fri 5/25/07
29		DEMOLITION	10 days	Mon 5/14/07	Fri 5/25/07
30		EROSION CONTROL	60 days	Mon 5/14/07	Fri 8/3/07
31		TRAFFIC CONTROL	60 days	Mon 5/14/07	Fri 8/3/07
32		EARTHWORK	15 days	Mon 5/28/07	Fri 6/15/07
33		STORM SEWER SYSTEM	28 days	Wed 5/16/07	Fri 6/22/07
34		WATER MAIN INSTALLATION	40 days	Mon 4/30/07	Fri 6/22/07
35		ELECTRICAL / TRAFFIC SIGNALS	28 days	Wed 5/16/07	Fri 6/22/07
36		CURB & GUTTER / SIDEWALKS	20 days	Mon 6/11/07	Fri 7/6/07
37		LANDSCAPING	1 day	Mon 7/9/07	Mon 7/9/07
38		BASE & PAVING	20 days	Mon 7/2/07	Fri 7/27/07
39		STRIPING & SIGNAGE	3 days	Mon 7/30/07	Wed 8/1/07
40		EAST ENGINEERING PARKING IMPROVEMENTS	40 days	Mon 6/4/07	Fri 7/27/07
41		OPEN TRAFFIC PHASE II	1 day	Mon 8/6/07	Mon 8/6/07
43					
42		PROJECT CLEAN UP / CLOSE-OUT	5 days	Mon 7/30/07	Fri 8/3/07
44		PROJECT COMPLETE	1 day	Mon 8/6/07	Mon 8/6/07

Figure 8: Construction Schedule cont.

Appendix 2: Hazard map

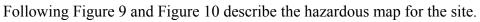


Figure 9: Hazard Map (left column: initial and right column: final topography)

CE585 Construction Site Erosion and Sediment Control July 19, 2007 Noboru Togawa

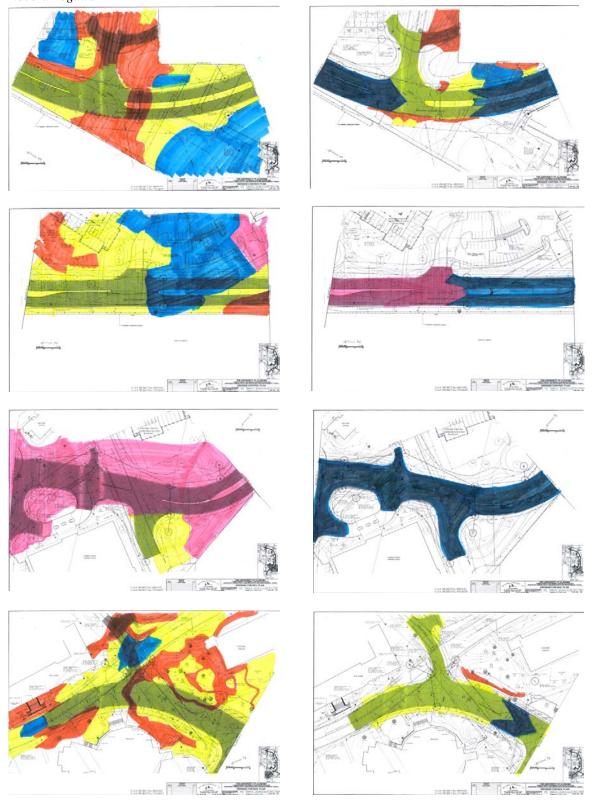


Figure 10: Hazard Map cont. (left column: initial and right column: final topography)

Appendix 3: Peak runoff calculation by Win TR55

Figure 11 describes the plot of hydrographs for the construction site. Following explanation is the detail information for the hydrological calculation done by Win TR55.

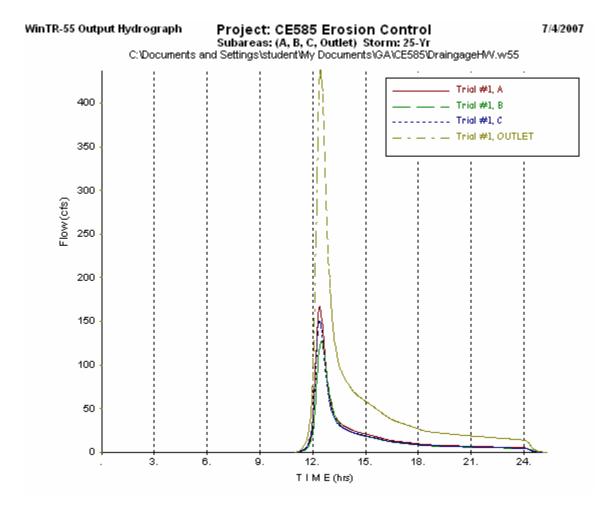


Figure 11: Output Hydrograph (source: WinTR-55)

--- Identification Data ---

User:	Noboru	Date:	7/10/2007
Project:	Campus Drive Relocation	Units:	English
SubTitle:		Areal Units:	Acres
State:	Alabama		
County:	Tuscaloosa		
Filename:	C:\Documents and Settings	<pre>S\Hunter\My Documents\GA\CE</pre>	585\Campus Drive.w55

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Тс
U1	Upslope	Ul Reach	2.01	98	0.1
U2	Upslope	U2 Reach	3.04	98	.116
U 3	Upslope	U3 Reach	9.13	68	.321
U4	Upslope	U4 Reach	3.14	98	0.1
01	On site	Ol Reach	15.28	71	.117
02	On site	O2 Reach	2.37	65	.138
03	On site	O3 Reach	11.59	78	.324
04	On site	O4 Reach	10.11	89	.281
05	On site	O5 Reach	6.55	95	.156

Total area: 63.22 (ac)

--- Storm Data --

Rainfall Depth by Rainfall Return Period

2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	1-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
4.2	5.4	6.3	7.1	7.8	8.6	3.6

Storm Data Source:	Tuscaloosa County, AL (NRC	S)
Rainfall Distribution Type:	Type III	
Dimensionless Unit Hydrograph:	<standard></standard>	

_

Noboru

Campus Drive Relocation

Tuscaloosa County, Alabama

Storm Data

Rainfall Depth by Rainfall Return Period

2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	1-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
4.2	5.4	6.3	7.1	7.8	8.6	3.6

Storm Data Source:Tuscaloosa County, AL (NRCS)Rainfall Distribution Type:Type IIIDimensionless Unit Hydrograph:<standard>

_

_ Noboru

Campus Drive Relocation

Tuscaloosa County, Alabama

Watershed Peak Table

SUBAREAS U1 11.95 14.49 U2 17.93 21.74 U3 25.46 34.75 U4 18.69 22.66 O1 59.13 78.79 O2 7.48 10.33 O3 42.14 54.54 O4 46.89 58.06 O5 36.88 44.90 PU Reach 11.95 14.49 D2 Reach 17.93 21.74 Down 11.95 14.49 V2 Reach 17.93 21.74 Down 11.95 14.49 V2 Reach 17.93 21.73 V3 Reach 25.46 34.75 Down 18.69 22.66 O Down 18.68 22.64 O1 Reach 241.53 309.65 Down 167.13 212.26 O Down 161.04 203.83 O4 Reach 99.79 122.28 Down 161.04 203.83 O4 Reach 99.79 122.28 D	Sub-Area or Reach Identifier	25-Yr	ak Flow by Rai 100-Yr (cfs)	nfall Return	Period		
U1 11.95 14.49 U2 17.93 21.74 U3 25.46 34.75 U4 18.69 22.66 O1 59.13 78.79 O2 7.48 10.33 O3 42.14 54.54 O4 46.89 58.06 O5 36.88 44.90 PU Reach 11.95 14.49 U2 Reach 25.46 34.75 U3 Reach 25.45 34.73 U2 Reach 25.45 34.73 U4 Reach 18.69 22.66 Down 17.93 21.74 Down 25.45 34.73 U4 Reach 18.69 22.66 Down 18.68 22.66 Down 167.13 212.26 O2 Reach 167.13 212.26 O3 Reach 161.17 204.02 Down 161.64 203.83 O4 Reach 99.79 122.28 Down 36.87 44.88						 	
U3 25.46 34.75 U4 18.69 22.66 O1 59.13 78.79 O2 7.48 10.33 O3 42.14 54.54 O4 46.89 58.06 O5 36.88 44.90 PU Reach 11.95 14.49 Down 11.95 14.49 V2 Reach 7.73 21.73 U3 Reach 25.46 34.75 Down 18.69 22.64 O1 Reach 25.45 34.73 U4 Reach 18.69 22.64 ODwn 14.133 309.65 Down 161.17 204.02 Down 161.17 204.02 Down 161.17 203.83 O4 Reach 99.79 122.26 O3 Reach 161.17 204.02 Down 99.73 122.28 OS Reach 99.79 122.28 OS Reach 36.87 44.90 Down 36.87 44.88	-	11.95	14.49				
U4 18.69 22.66 O1 59.13 78.79 O2 7.48 10.33 O3 42.14 54.54 O4 46.89 58.06 O5 36.88 44.90 PU Reach 11.95 14.49 U2 Reach 17.93 21.74 Down 11.95 14.49 U2 Reach 34.75 Down 17.93 21.73 U3 Reach 18.69 22.66 Down 18.68 22.64 O1 Reach 241.53 309.65 Down 167.13 212.26 O2 Reach 161.17 203.83 O2 Reach 161.17 203.83 O4 Reach 99.79 122.28 Down 36.87 44.88	U2	17.93	21.74				
01 59.13 78.79 02 7.48 10.33 03 42.14 54.54 04 46.89 58.06 05 36.88 44.90 REACHES U1 Reach 11.95 11.95 14.49 U2 Reach 17.93 Down 17.93 U3 Reach 25.46 34.75 309.65 Down 16.13 212.26 Down 161.17 202.883 04 Reach 161.17 161.10 203.83 04 Reach 36.88 99.73 122.28 05 Reach 36.88	U 3	25.46	34.75				
02 7.48 10.33 03 42.14 54.54 04 46.89 58.06 05 36.88 44.90 REACHES U2 Reach 11.95 17.93 21.74 Down 17.93 21.73 U3 Reach 25.46 34.75 Down 18.69 22.66 Down 18.69 22.64 01 Reach 241.53 309.65 Down 16.713 212.26 03 Reach 161.17 204.02 Down 161.17 204.02 Down 161.22.22 30.83 04 Reach 99.79 122.28 05 Reach 36.88 44.90	U4	18.69	22.66				
03 42.14 54.54 04 46.89 58.06 05 36.88 44.90 REACHES 11.95 14.49 U1 Reach 11.95 14.49 U2 Reach 17.93 21.73 U3 Reach 25.46 34.75 U4 Reach 18.69 22.66 Down 18.68 22.64 01 Reach 241.53 309.65 02 Reach 167.13 212.26 03 Reach 161.17 204.02 03 Reach 161.17 203.83 04 Reach 99.79 122.22 05 Reach 36.88 44.90	01	59.13	78.79				
04 46.89 58.06 05 36.88 44.90 REACHES 11.95 14.49 U2 Reach 17.93 21.74 D0wn 17.93 21.73 U3 Reach 25.46 34.75 D4 Reach 18.69 22.66 D0 Reach 241.53 309.65 D0 Reach 167.13 212.26 D3 Reach 161.17 204.02 D3 Reach 161.17 203.83 O4 Reach 161.87 203.83 O4 Reach 36.88 44.90 Down 36.88 44.88	02	7.48	10.33				
05 36.88 44.90 REACHES U1 Reach Down 11.95 14.49 12 Reach Down 17.93 21.74 13 Reach Down 25.45 34.75 14 Reach Down 18.69 22.66 01 Reach Down 241.53 309.65 02 Reach Down 167.13 212.26 03 Reach Down 161.17 204.02 03 Reach Down 161.17 203.83 04 Reach Down 99.79 122.28 05 Reach Down 36.88 44.90	03	42.14	54.54				
REACHES 11.95 14.49 U2 Reach 17.93 21.74 Down 17.93 21.73 U3 Reach 25.46 34.75 Down 25.45 34.73 U4 Reach 18.69 22.66 Down 18.68 22.64 Ol Reach 241.53 309.65 Down 167.13 212.26 O3 Reach 161.17 204.02 Down 161.04 203.83 O4 Reach 99.79 122.28 Down 36.87 44.88	04	46.89	58.06				
U1 Reach 11.95 14.49 Down 11.95 14.49 U2 Reach 17.93 21.74 Down 17.93 21.73 U3 Reach 25.46 34.75 Down 25.45 34.73 U4 Reach 18.69 22.66 Down 18.68 22.64 O1 Reach 241.53 309.65 Down 167.13 212.26 O2 Reach 167.13 212.26 O3 Reach 161.17 204.02 Down 161.04 203.83 O4 Reach 99.79 122.28 Down 99.73 122.22 O5 Reach 36.87 44.88	05	36.88	44.90				
U1 Reach 11.95 14.49 Down 11.95 14.49 U2 Reach 17.93 21.74 Down 17.93 21.73 U3 Reach 25.46 34.75 Down 25.45 34.73 U4 Reach 18.69 22.66 Down 18.68 22.64 O1 Reach 241.53 309.65 Down 167.13 212.26 O2 Reach 167.13 212.26 O3 Reach 161.17 204.02 Down 161.04 203.83 O4 Reach 99.79 122.28 Down 99.73 122.22 O5 Reach 36.87 44.88	DEACHEC						
Down 11.95 14.49 U2 Reach 17.93 21.74 Down 17.93 21.73 U3 Reach 25.46 34.75 Down 25.45 34.73 U4 Reach 18.69 22.66 Down 18.68 22.64 O1 Reach 241.53 309.65 Down 241.47 309.63 O2 Reach 167.13 212.26 O3 Reach 161.17 204.02 Down 161.04 203.83 O4 Reach 99.79 122.28 Down 36.87 44.88		11 95	14 49				
Down 17.93 21.73 U3 Reach 25.46 34.75 Down 25.45 34.73 U4 Reach 18.69 22.66 Down 18.68 22.64 O1 Reach 241.53 309.65 Down 241.47 309.63 O2 Reach 167.13 212.26 O3 Reach 161.17 204.02 Down 161.04 203.83 O4 Reach 99.79 122.28 Down 36.87 44.88							
Down 17.93 21.73 U3 Reach 25.46 34.75 Down 25.45 34.73 U4 Reach 18.69 22.66 Down 18.68 22.64 O1 Reach 241.53 309.65 Down 241.47 309.63 O2 Reach 167.13 212.26 O3 Reach 161.17 204.02 Down 161.04 203.83 O4 Reach 99.79 122.28 Down 36.87 44.88	U2 Reach	17.93	21.74				
Down 25.45 34.73 U4 Reach 18.69 22.66 Down 18.68 22.64 O1 Reach 241.53 309.65 Down 241.47 309.63 O2 Reach 167.13 212.26 O3 Reach 161.17 204.02 Down 161.04 203.83 O4 Reach 99.79 122.28 Down 36.88 44.90 Down 36.87 44.88	Down	17.93	21.73				
U4 Reach 18.69 22.66 Down 18.68 22.64 O1 Reach 241.53 309.65 Down 241.47 309.63 O2 Reach 167.13 212.26 Down 161.17 204.02 Down 161.04 203.83 O4 Reach 99.79 122.28 Down 99.73 122.22 O5 Reach 36.88 44.90 Down 36.87 44.88	U3 Reach	25.46	34.75				
Down 18.68 22.64 O1 Reach 241.53 309.65 Down 241.47 309.63 O2 Reach 167.13 212.26 Down 167.13 212.26 O3 Reach 161.17 204.02 Down 161.04 203.83 O4 Reach 99.79 122.28 Down 99.73 122.22 O5 Reach 36.88 44.90 Down 36.87 44.88	Down	25.45	34.73				
01 Reach 241.53 309.65 Down 167.13 212.26 02 Reach 167.13 212.26 03 Reach 161.17 204.02 Down 161.04 203.83 04 Reach 99.79 122.28 Down 99.73 122.22 05 Reach 36.88 44.90 Down 36.87 44.88	U4 Reach	18.69	22.66				
Down 241.47 309.63 O2 Reach 167.13 212.26 Down 167.13 212.26 O3 Reach 161.17 204.02 Down 161.04 203.83 O4 Reach 99.79 122.28 Down 99.73 122.22 O5 Reach 36.88 44.90 Down 36.87 44.88	Down	18.68	22.64				
Down 167.13 212.26 O3 Reach 161.17 204.02 Down 161.04 203.83 O4 Reach 99.79 122.28 Down 99.73 122.22 O5 Reach 36.88 44.90 Down 36.87 44.88							
Down 167.13 212.26 O3 Reach 161.17 204.02 Down 161.04 203.83 O4 Reach 99.79 122.28 Down 99.73 122.22 O5 Reach 36.88 44.90 Down 36.87 44.88	02 Boach	167 13	21.2 2 <i>6</i>				
03 Reach 161.17 204.02 Down 161.04 203.83 04 Reach 99.79 122.28 Down 99.73 122.22 05 Reach 36.88 44.90 Down 36.87 44.88							
Down 161.04 203.83 O4 Reach 99.79 122.28 Down 99.73 122.22 O5 Reach 36.88 44.90 Down 36.87 44.88	Down	107.15	212.20				
04 Reach 99.79 122.28 Down 99.73 122.22 05 Reach 36.88 44.90 Down 36.87 44.88	O3 Reach	161.17	204.02				
Down 99.73 122.22 O5 Reach 36.88 44.90 Down 36.87 44.88	Down	161.04	203.83				
Down 99.73 122.22 O5 Reach 36.88 44.90 Down 36.87 44.88	04 Reach	99.79	122.28				
Down 36.87 44.88							
Down 36.87 44.88	05 Reach	36.88	44,90				
OUTLET 241.47 309.63							
	OUTLET	241.47	309.63				

_

_ Noboru

Campus Drive Relocation

Tuscaloosa County, Alabama

Hydrograph Peak/Peak Time Table

Identifier			Time	(hr)	by	Rainfal	l Returr	1 Period	
SUBAREAS Ul	11.95 12.10	14.49 12.10							
U2	17.93 12.11								
U 3	25.46 12.24								
U4	18.69 12.10	22.66 12.10							
01	59.13 12.12	78.79 12.12							
02	7.48 12.13	10.33 12.13							
03	42.14 12.23								
04	46.89 12.18								
05	36.88 12.12								
REACHES Ul Reach	11 95	14 49							
	12.10 12.11 12.11	12.10 14.49							
U2 Reach	12.11	12.11							
Down	17.93 12.12								
U3 Reach Down	25.46 12.24 25.45								
U4 Reach	12.26	12.26							
	12.10 18.68 12.13	12.10 22.64							
01 Reach		309.65							
Down	241.47 12.16	309.63							

CE585 Construction Site Erosion and Sediment Control July 19, 2007 Noboru Togawa O2 Reach 167.13 212.26 12.20 12.20 167.13 212.26 Down 12.20 12.20 O3 Reach 161.17 204.02 12.18 12.18 161.04 203.83 Down 12.20 12.20 99.79 122.28 04 Reach 12.15 12.15 99.73 122.22 Down 12.16 12.16 05 Reach 36.88 44.90 12.12 12.12 36.87 44.88 Down 12.12 12.13 OUTLET 241.47 309.63 _ Campus Drive Relocation Noboru Tuscaloosa County, Alabama Sub-Area Summary Table Sub-Area Drainage Time of Curve Receiving Sub-Area Identifier Area Concentration Number Reach Description (ac) (hr) _____ 2.010.10098U1 Reach Upslope3.040.11698U2 Reach Upslope9.130.32168U3 Reach Upslope3.140.10098U4 Reach Upslope15.280.11771O1 Reach On site2.370.13865O2 Reach On site11.590.32478O3 Reach On site10.110.28189O4 Reach On site6.550.15695O5 Reach On site **U1** U2 **U**3 U4 01 02 03 04 05 Total Area: 63.22 (ac) _ _ Noboru Campus Drive Relocation Tuscaloosa County, Alabama Reach Summary Table

Reach Identifier	Receiving Reach Identifier	Reach Length (ft)	Routing Method
Ul Reach	01 Reach	750	CHANNEL
U2 Reach	01 Reach	725	CHANNEL
U3 Reach	O3 Reach	1725	CHANNEL
U4 Reach	04 Reach	1100	CHANNEL
O1 Reach	Outlet	1600	CHANNEL

CE585 Construction Site Erosion and Sediment Control July 19, 2007

Noboru Togawa

O2 Reach	01 Reach	450	CHANNEL
O3 Reach	O2 Reach	1800	CHANNEL
04 Reach	O3 Reach	1275	CHANNEL
05 Reach	O4 Reach	250	CHANNEL

_

_ Noboru

Campus Drive Relocation

Tuscaloosa County, Alabama

Sub-Area Time of Concentration Details

Sub-Area Identifier/	Flow Length (ft)	Slope (ft/ft)	Mannings's n	End Area (sq ft)	Wetted Perimeter (ft)	Velocity (ft/sec)	
 U1							
SHEET	100	0.2000	0.011				0.007
SHALLOW	125	0.1600	0.025				0.004
CHANNEL	750	0.1333	0.013	0.50	2.50	13.889	0.015
	750	0.1333	0.015	0.50	2.50	13.005	0.015
				Ti	me of Concer		0.1
U2							
SHEET	100	0.2000	0.150				0.057
SHALLOW	125	0.1600	0.025				0.004
SHALLOW	300	0.0667	0.025				0.016
CHANNEL	700	0.0286	0.013	0.50	2.50	6.705	0.029
CHANNEL	350	0.0571	0.013	0.50	2.50	9.722	0.010
				Ti	me of Conce	ntration	.116
U 3							
	100	0.2000	0.240				0.083
SHEET SHALLOW	475	0.2000	0.240				0.083
SHALLOW	425	0.0421	0.025				0.040
CHANNEL	1725		0.025	0.50	2.50	5.990	0.027
CHANNEL	1875	0.0232	0.013	0.50	2.50	5.723	0.080
CHANNEL	10/2	0.0213	0.013	0.50	2.50	5.725	0.091
				Ti	me of Conce	ntration	.321
U4							
SHEET	100	0.2000	0.011				0.007
SHALLOW	142	0.0141	0.025				0.016
SHALLOW	120	0.1667	0.025				0.004
CHANNEL	425	0.0471	0.013	0.50	2.50	8.433	0.014
CHANNEL	350	0.0571	0.013	0.50	2.50	9.722	0.010
				Ti	me of Conce	ntration	0.1
							=======
01							
SHEET	100	0.2000	0.011				0.007
SHALLOW	725	0.1103	0.025				0.030
SHALLOW	625	0.0960	0.025				0.030
CHANNEL	1625	0.0492	0.023	0.50	2.50	8.681	0.028
LTT 1111	1025		0.015	0.00	2.30	0.001	0.002
				Ti	me of Concer	ntration	.117
02							
SHEET	100	0.2000	0.240				0.083
	200						

CE585 Construct	ion Site E	rosion and S	ediment Conti	rol			
July 19, 2007							
Noboru Togawa	285	0 1067	0 050				0 000
SHALLOW SHALLOW	375 350	0.1067 0.1143	0.050 0.050				0.020 0.018
CHANNEL	300	0.1333	0.013	0.50	2.50	13.889	0.018
CHANNEL	450	0.0889	0.013	0.50	2.50	11.364	0.011
	150		01015	0.50	2150	11.001	0.011
				Tim	e of Conce	entration	.138
~							
O3 SHEET	100	0.2000	0.240				0.083
SHALLOW	675	0.2000	0.240				0.083
SHALLOW	550	0.0364	0.050				0.050
CHANNEL	1825	0.0110	0.013	0.50	2.50	4.122	0.123
	1015	0.0110	0.015	0.50	2150		01110
				Tim	e of Conce	entration	.324
							=======
04							
SHEET	100	0.2000	0.011				0.007
SHALLOW	1325	0.0453	0.025				0.085
SHALLOW	1225	0.0490	0.025				0.076
CHANNEL	1050	0.0571	0.013	0.50	2.50	9.409	0.031
CHANNEL	2000	0.0300	0.013	0.50	2.50	6.775	0.082
				m i	e of Conce		.281
				1 III		entracion	.201
05							
SHEET	100	0.2000	0.011				0.007
SHALLOW	1175	0.0681	0.025				0.062
SHALLOW	1050	0.0952	0.025				0.047
CHANNEL	1375	0.0582	0.013	0.50	2.50	9.549	0.040
				Tim	e of Conce	entration	.156
							=======

_

_ Noboru

Campus Drive Relocation

Tuscaloosa County, Alabama

Sub-Area Land Use and Curve Number Details

Sub-Area Identifie	-	Hydrologic Soil Group	Sub-Area Area (ac)	Curve Number
U1	Paved parking lots, roofs, driveways	в	2.009	98
	Total Area / Weighted Curve Number		2.01 ====	98 ==
U2	Paved parking lots, roofs, driveways	в	3.042	98
	Total Area / Weighted Curve Number		3.04	98 ==
U3	Open space; grass cover > 75% (good Paved parking lots, roofs, driveways) B B	7.306 1.827	61 98
	Total Area / Weighted Curve Number		9.13 ====	68 ==
U4	Paved parking lots, roofs, driveways	в	3.142	98

	Total Area / Weighted Curve Number		3.14	98 ==
01	Open space; grass cover 50% to 75% (fair)	А	.306	49
	Open space; grass cover 50% to 75% (fair)	в	13.447	69
	Paved parking lots, roofs, driveways	в	1.528	98
	Total Area / Weighted Curve Number		15.28	71
			=====	==
02	Open space; grass cover > 75% (good)	в	2.13	61
	Paved parking lots, roofs, driveways	в	.237	98
	Total Area / Weighted Curve Number		2.37	65
			====	==
03	Open space; grass cover 50% to 75% (fair)	в	8.115	69
	Paved parking lots, roofs, driveways	в	3.478	98
	Total Area / Weighted Curve Number		11.59	78
			=====	==
04	Open space; grass cover 50% to 75% (fair)	в	3.032	69
	Paved parking lots, roofs, driveways	в	7.076	98
	Total Area / Weighted Curve Number		10.11	89
			=====	==
05	Open space; grass cover 50% to 75% (fair)	в	.655	69
	Paved parking lots, roofs, driveways	в	5.24	98
	Paved parking lots, roofs, driveways	C	.655	98
	Total Area / Weighted Curve Number		6.55	95
			====	==

_ _ _

Appendix 4: RUSLE calculation

14.0 RUSLE Calculation

14.1 Phase 1 Improvement

The first phase improvement has been started from December 15th 2006 to May 3rd 2007 which includes the 4 active construction areas and 7 undisturbed areas including the site for Phase 2 improvement. The total soil loss on the site for this period was estimated in 3313 tons. The annual rainfall energy R was estimated as 375 and the erosion index of 29% is estimated to affect the erosion considering the location and the period of phase 1 improvement. The credibility factor K is determined from the information of Table 1 considering that at least 5 inch of the top soil will be removed before the construction. The cover factor C has estimated as 0.001 for undisturbed and well protected areas as well as 1.0 for active construction areas. The Table 3 shows the soil runoff for the phase 1 improvement.

	Phase 1 Improvement Soil Runoff (December 15, 2006-May 3, 2007)										
	Description	Area (ac.)	R for pharse period	K Erodibility Factors	Length of the Slope (ft)	Slope (ft/ft)	LS Sloop Length Factore	C Cover Factor	Unit Area Soil Loss (tons/acre s/period)	Total Area Soil Loss (tons/period)	
Α	Undisturbed	2.01	108.75	0.32	125	0.160	3.21	0.001	0.112	0.22	
В	Undisturbed	3.04	108.75	0.32	300	0.067	1.81	0.001	0.063	0.19	
С	Undisturbed	9.13	108.75	0.32	475	0.042	2.69	0.001	0.094	0.85	
D	Undisturbed	3.14	108.75	0.32	142	0.014	0.23	0.001	0.008	0.03	
E1	Active	6.11	108.75	0.24	725	0.1103	6.65	1.000	173.565	1060.48	
E2	Active	9.17	108.75	0.32	625	0.096	4.79	1.000	166.692	1528.57	
F	Active	2.37	108.75	0.32	375	0.1067	3.99	1.000	138.852	329.08	
G	Active	11.59	108.75	0.32	675	0.0291	0.97	1.000	33.756	391.23	
Н	Phase 2	10.11	108.75	0.32	1325	0.0453	2.55	0.001	0.089	0.90	
l1	Phase 2	1.31	108.75	0.37	1175	0.0952	7.02	0.001	0.282	0.37	
12	Phase 2	5.24	108.75	0.32	1050	0.0582	3.3	0.001	0.115	0.60	
total		63.220								3312.52	

Table 3: RUSLE Calculation for December 15, 2006 to May 3, 2007

14.2 Phase 2 Improvement and Campus and Hackberry X-section

Site is currently the second phase improvement and it has been started from May 14th 2007 to July 27th 2007 which includes the 4 active construction areas and 7 undisturbed areas including the site completed during the phase 1 improvement. The total soil loss on the site for this period was estimated in 1701 tons. The annual rainfall energy R was estimated as 375 and the erosion index of 26% is estimated to affect the erosion. The credibility factor K is determined from the information of Table 1 considering that at least 5 inch of the top soil will be removed before the construction. The cover factor C has estimated as 0.001 for undisturbed and well protected areas as well as 1.0 for active construction areas. The Table 4 shows the soil runoff calculation result.

	Phase 2 Improvement and Campus & Hackberry X-Section Soil Runoff (May 14, 2007-July 27, 2007)										
	Description	Area (ac.)	R for pharse			Slope	LS Sloop Length	C Cover	Unit Area Soil Loss (tons/acre	Total Area Soil Loss	
			period	Factors	(ft)	(ft/ft)	Factore	Factor	s/period)	(tons/period)	
Α	Undisturbed	2.01	97.50	0.32	125	0.160	3.21	0.001	0.100	0.20	
В	Undisturbed	3.04	97.50	0.32	300	0.067	1.81	0.001	0.056	0.17	
С	Undisturbed	9.13	97.50	0.32	475	0.042	2.69	0.001	0.084	0.77	
D	Active	3.14	97.50	0.32	142	0.014	0.23	1.000	7.176	22.53	
E1	Completed	6.11	97.50	0.24	725	0.075	2.40	0.001	0.056	0.34	
E2	Completed	9.17	97.50	0.32	625	0.075	2.21	0.001	0.069	0.63	
F	Completed	2.37	97.50	0.32	375	0.035	0.94	0.001	0.029	0.07	
G	Completed	11.59	97.50	0.32	675	0.035	1.26	0.001	0.039	0.46	
Н	Active	10.11	97.50	0.32	1325	0.0453	2.55	1.000	79.560	804.35	
l1	Active	1.31	97.50	0.37	1175	0.0952	7.02	1.000	253.247	331.75	
12	Active	5.24	97.50	0.32	1050	0.0582	3.3	1.000	102.960	539.51	
total		63.220								1700.79	

Table 4: RUSLE Calculation for May 14, 2007 to July 27, 2007

14.3 After Active Construction and All Land Covered

The soil runoff calculation is for the construction of July $30^{\text{th}} 2007$ to August $6^{\text{th}} 2007$. The entire site is covered after the completion of the construction. The total soil loss on the site for this period was estimated in 1.12 tons. The annual rainfall energy R was estimated as 375 and the erosion index of 7% is estimated to affect the erosion. The cover factor C has estimated as 0.001 for undisturbed and well protected areas. Table 5 shows the result.

After Active Construction and All Land Covered Soil Runoff (July 30, 2007-August 6, 2007)										
	Description	Area (ac.)	R for pharse period	K Erodibility Factors	Length of the Slope (ft)	Slope (ft/ft)	LS Sloop Length Factore	C Cover Factor	Unit Area Soil Loss (tons/acre s/period)	Total Area Soil Loss (tons/period)
Α	Undisturbed	2.01	26.25	0.32	125	0.160	3.21	0.001	0.027	0.05
В	Undisturbed	3.04	26.25	0.32	300	0.067	1.81	0.001	0.015	0.05
С	Undisturbed	9.13	26.25	0.32	475	0.042	2.69	0.001	0.023	0.21
D	Completed	3.14	26.25	0.32	142	0.020	0.37	0.001	0.003	0.01
E1	Completed	6.11	26.25	0.24	725	0.075	2.40	0.001	0.015	0.09
E2	Completed	9.17	26.25	0.32	625	0.075	2.21	0.001	0.019	0.17
F	Completed	2.37	26.25	0.32	375	0.035	0.94	0.001	0.008	0.02
G	Completed	11.59	26.25	0.32	675	0.035	1.26	0.001	0.011	0.12
Н	Completed	10.11	26.25	0.32	1325	0.035	1.86	0.001	0.016	0.16
l1	Completed	1.31	26.25	0.37	1175	0.035	1.86	0.001	0.018	0.02
12	Completed	5.24	26.25	0.32	1050	0.075	4.91	0.001	0.041	0.22
total		63.220								1.12

Table 5: RUSLE Calculation for July 30, 2007 to August 6, 2007

Appendix 5: Channel design and slope protection

15.0 Channel design calculation

The site consists of one main channel that diverts water from the upper portion of the watershed. The channel is located at the north side of the watershed area of the construction site. The cross section of the channel will be a trapezoidal in shape as shown in Figure 12.

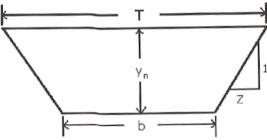


Figure 12: Cross section of the channel

The soil at the site is identified as sandy loam by Tuscaloosa County Soil Survey and the design criteria for the channel is as follows.

Maximum permissible velocity (V_{max}): 2.5 ft/sec Allowable shear stress (τ_0): 0.075 lb/ft²

Sandy loam soil have the manning's coefficient is 0.02. Manning's equation for open channel flow will be used to compute the hydraulic radius.

$$AR^{2/3} = \frac{nQ}{1.49S^{0.5}}$$
$$A = \frac{Q}{V} = (b + Zy)y$$
$$P = b + Zy$$
$$A = Q/V = (b + Zy)y$$
$$P = b + Zy\sqrt{1 + Z^{2}}$$

where, R = hydraulic radius, ft V= permissible velocity, ft/sec S = channel slope, ft/ft n = roughness of channel lining material, dimensionless P= wetted parameter Z= slope A= area

All the required geometry calculations were performed by using excel spread sheet. Table 6 describes the channel design and lining selection.

Channel ID	Q (ft³/s)	S ₀	nQ/1.49S ₀ ^{1/2}	b (ft)	z	y (ft)	A (ft ²)	P(ft)	R (ft)	AR ^{2/3}	V _{max} (ft/s)	τ ₀ (lb/ft ²)	Need lining?	Type of lining	Allowable τ ₀ (lb/ft ²)
U1	10.60	0.133	0.390	6	1	0.19	1.206	6.551	0.184	0.390	8.791	1.619	Yes	C125BN	2.35
U2	15.90	0.028	1.285	6	1	0.40	2.550	7.127	0.358	1.285	6.235	0.686	Yes	C125BN	2.35
U3	20.69	0.023	1.823	6	1	0.49	3.191	7.390	0.432	1.823	6.484	0.712	Yes	C125BN	2.35
U4	16.57	0.018	1.649	6	1	0.46	2.992	7.309	0.409	1.649	5.539	0.526	Yes	C125BN	2.35
01	205.59	0.050	12.341	6	1	1.53	11.488	10.317	1.113	12.341	17.896	4.762	Yes	P300	8.00
02	143.28	0.089	6.450	6	1	1.04	7.354	8.953	0.821	6.450	19.483	5.791	Yes	P300	8.00
03	138.53	0.011	17.649	6	1	1.88	14.768	11.304	1.306	17.649	9.380	1.299	Yes	C125BN	2.35
O4	87.68	0.047	5.423	6	1	0.94	6.541	8.665	0.755	5.423	13.404	2.769	Yes	P300	8.00
05	32.58	0.080	1.546	6	1	0.45	2.870	7.260	0.395	1.546	11.351	2.223	Yes	C125BN	2.35
Channel ID	Q (ft ³ /s)	S ₀	nQ/1.49S ₀ ^{1/2}	b (ft)	z	y (ft)	A (ft ²)	P (ft)	R (ft)	AR ^{2/3}	V _{max} (ft/s)	τ ₀ (lb/ft ²)	Need lining?	Type of lining	Allowable τ ₀ (lb/ft ²)
U1	10.60	0.133	0.390	10	1	0.14	1.451	10.404	0.139	0.390	7.308	1.190	Yes	SC150BN	2.10
U2	15.90	0.028	1.285	10	1	0.29	3.014	10.828	0.278	1.285	5.275	0.504	Yes	SC150BN	2.10
U3	20.69	0.023	1.823	10	1	0.36	3.744	11.022	0.340	1.823	5.526	0.523	Yes	SC150BN	2.10
U4	16.57	0.018	1.649	10	1	0.34	3.518	10.962	0.321	1.649	4.710	0.386	Yes	SC150BN	2.10
01	205.59	0.050	12.341	10	1	1.14	12.686	13.221	0.960	12.341	16.206	3.553	Yes	P300	5.50
02	143.28	0.089	6.450	10	1	0.77	8.319	12.184	0.683	6.450	17.224	4.284	Yes	P300	5.50
03	138.53	0.011	17.649	10	1	1.41	16.081	13.987	1.150	17.649	8.614	0.976	Yes	SC150BN	2.10
04	87.68	0.047	5.423	10	1	0.70	7.443	11.968	0.622	5.423	11.780	2.045	Yes	SC150BN	2.10
05	32.58	0.080	1.546	10	1	0.33	3.380	10.926	0.309	1.546	9.639	1.634	Yes	SC150BN	2.10
Channel ID	Q (ft ³ /s)	S ₀	nQ/1.49S ₀ ^{1/2}	b (ft)	z	y (ft)	A (ft ²)	P(ft)	R (ft)	AR ^{2/3}		τ ₀ (lb/ft ²)	Need lining?	Type of lining	Allowable _{T0} (lb/ft ²)
U1	10.60	0.133	0.390	10	4	0.14	1.492	11.165	0.134	0.390	7.105	1.175	Yes	S75	1.55
U2	15.90	0.028	1.285	10	4	0.29	3.178	12.352	0.257	1.285	5.004	0.491	Yes	S75	1.55
U3	20.69	0.023	1.823	10	4	0.35	3.987	12.884	0.309	1.824	5.190	0.506	Yes	S75	1.55
U4	16.57	0.018	1.649	10	4	0.33	3.735	12.721	0.294	1.650	4.437	0.375	Yes	S75	1.55
01	205.59	0.050	12.341	10	4	1.03	14.503	18.475	0.785	12.341	14.176	3.207	Yes	P300	5.50
02	143.28	0.089	6.450	10	4	0.72	9.261	15.931	0.581	6.451	15.472	3.990	Yes	P300	5.50
03	138.53	0.011	17.649	10	4	1.25	18.653	20.268	0.920	17.649	7.427	0.862	Yes	S75	1.55
04	87.68	0.047	5.423	10	4	0.65	8.229	15.381	0.535	5.423	10.655	1.918	Yes	SC150BN	2.10
05	32.58	0.080	1.546	10	4	0.32	3.581	12.620	0.284	1.547	9.097	1.586	Yes	SC150BN	2.10

Table 6: Channel design and lining selection

The table indicates that all channels require the lining in order to satisfy the shear stress requirement. Also, Figure 13 shows the channel design and lining selection by North American Green software.

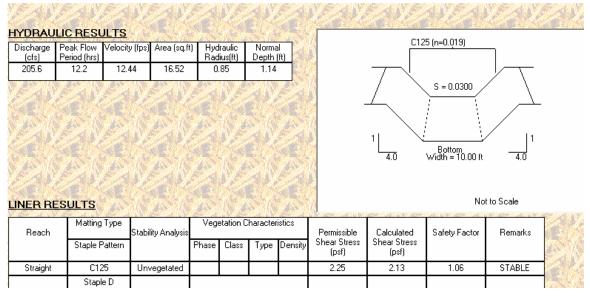


Figure 13: Channel design and lining selection by North American Green software

16.0 Slope protection

The site is divided into upstream, onsite, and downstream areas. The slope of the site is categorized into four types including: slope <2.0%, slope 2-5%, slope 5-10%, and slope >10%. The peak flow rates for individual watershed areas were calculated using the WinTR-55. Manning's n is 0.02 for the sandy loam as described above. The site has mainly two work phases and it will require the slope protection for the active construction sites during the construction and between these work phases. Onsite 3 is chosen to perform the slope protection analysis, having the following characteristics.

Slope (So) = 11%Width of slope (W) = 150 ft Flowrate (Q) = 18.88 cfs q = Q/W = 0.126 cfs/ft Manning's coefficient (n) = 0.02

Manning's equation is used to calculate the nominal depth for a sheetflow as follows.

$$y = \left(\frac{qn}{1.49s^{0.5}}\right)^{3/5} = \left(\frac{0.126 \times 0.02}{1.49 \times 0.16^{0.5}}\right)^{3/5} = 0.0421 ft$$

Where:

y = the flow depth (in feet), q = the unit width flow rate (Q/W) n = the sheet flow roughness coefficient for the slope surface s = the slope (as a fraction)

The corresponding maximum shear stress is calculated as follows.

$$\tau_0 = \gamma ys = 62.4 \times 0.0421 \times 0.11 = 0.289 lb / ft^2$$

where: γ = specific weight of water (62.4 lbs/ft3) y = flow depth (ft) S = slope (ft/ft)

The allowable shear stress ($\tau 0$) is 0.075 lb/ft2. Thus, it is necessary to install the vegetated mat in order to satisfy the stress requirement. The effective shear stress impacting the soil underneath an erosion control mat is calculated as follows.

$$\tau_{e} = \tau_{0} \left(1 - C_{f} \right) \left(\frac{n_{s}}{n} \right)^{2}$$
$$0.075 = 0.289 \left(1 - 0 \right) \left(\frac{0.02}{n_{mat}} \right)$$

 $n_{mat} = 0.077$

Where,

 $\tau e = effective shear stress exerted on soil beneath mat on slope$ $<math>\tau o = maximum shear stress from the flowing water = 0.289 lbs/ft2$ Cf = vegetal cover factor (this factor is 0 for an unvegetated channel) = 0 for criticalunvegetated slopens = roughness coefficient of underlying soil = 0.02nmat = roughness coefficient of mat

The final mat selection can be selected by applying the RUSLE. $A = (R)(K)(LS)(C)(P) = 375 \times 0.32 \times 6.65 = 798 tons / acre / year$

Where, R = 375 (Tuscaloosa, Alabama) K = 0.32 LS = 6.65 for length of 725 ft and slope of 11% C = 1 for bare slope

The total soil loss is 798 tons/acre/year or 4.75 inches per year. The maximum allowable erosion loss is 0.25 to 0.5 inches/year. The required C factor is from 0.25/4.75 to 0.5/4.75, which rages 0.053 to 0.11.

The C125 mat has a C of 0.09 (intermediate in the above range) and an n of 0.022 for this slope and condition.

The mat n is 0.022 and it cannot satisfy the required n value of 0.077. Thus, it requires terraces to divide the slope into several segments, and use diversion drains in order to collect the water from each terrace bench. Assume to divide slope into two parts (362.5 ft each) which enable the flowrate of Q to be half of the original as well as the flow depth of q to be half.

$$y = \left(\frac{qn}{1.49s^{0.5}}\right)^{3/5} = \left(\frac{0.063 \times 0.02}{1.49 \times 0.16^{0.5}}\right)^{3/5} = 0.0248 \, ft$$

The resulting share stress is calculates as follows.

$$\tau_0 = \gamma ys = 62.4 \times 0.0248 \times 0.11 = 0.170 lb / ft^2$$

The required value for n is as follows.

$$\tau_{e} = \tau_{0} \left(1 - C_{f} \left(\frac{n_{s}}{n} \right)^{2} \right)$$
$$0.075 = 0.289 \left(1 - 0 \right) \left(\frac{0.02}{n_{mat}} \right)$$

 $n_{mat} = 0.045$

The SC150 mat has a C of 0.11 (intermediate in the above range) and an n of 0.055 for this slope and condition therefore this mat is selected for the slope protection. Also, Figure 14 shows the slope selection calculated by North American Green software.

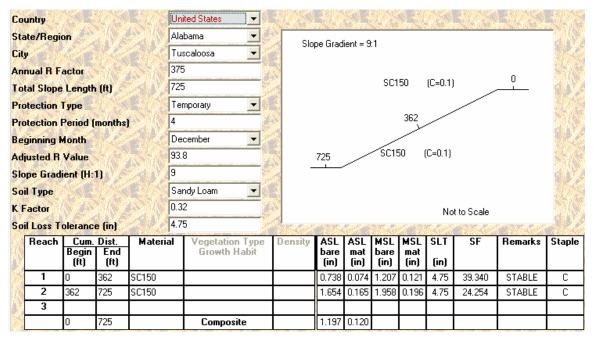


Figure 14: Slope protection by North American Green software

Appendix 6: Pond design and filter fence design

17.0 Pond design calculation

The pond is designed to remove approximately 90% of suspended solids. The pond needs to safely pass the flows from the 25 yr storm. The soil type is described previously. The following are the areas associated with each land use in the drainage area.

- Paved area: 16.66 acres
- Undeveloped area: 17.32 acres
- Construction area: 29.24 acres
- Total site area: 63.22 acres

17.1 Basic pond area and "live" storage volume

Table 7 shows the calculation of the pond surface area and water quality volume for a runoff from the 1.25 inches of rainfall. The water quality live storage has a surface area of 1.04 acres and a volume of 34.68 acre-inches or 2.89 acre-ft.

Site Subarea	Area	% of Area	Pond Surface	Water Quality Volume	Pond Volume
Site Subarea	(acres)	Needed-	Area (acres)	(inches of runoff)	(acre-inches)
Paved	16.66	3	0.500	1.1	18.326
Undeveloped	17.32	0.6	0.104	0.1	1.732
Construction	29.24	1.5	0.439	0.5	14.620
Total	63.22		1.042		34.678

Table 7: Pond surface area and water quality volume

17.2 Top surface area and side slope

Table 8 describes the calculation of the top surface area of the water quality live storage and determination of the site slope. Depth is calculated considering the alternative side slopes. The depth is determined 2.0 ft and the most appropriate slope would be 5 % having the top area of 1.85 acres.

Surface Area (acres)	Volume (acre-ft)	Depth (ft)	Top Area (acres)	Top Area (ft ²)	Top Radius (ft)	Surface Area (ft ²)	Surface Radius (ft)	Slope (%)	Accept?
1.042	2.890	1.0	4.738	206387.280	256.311	45389.520	120.200	0.7	too shallow
1.042	2.890	1.5	2.811	122461.680	197.435	45389.520	120.200	1.9	too shallow
1.042	2.890	2.0	1.848	80498.880	160.074	45389.520	120.200	5.0	Yes
1.042	2.890	2.5	1.270	55321.200	132.700	45389.520	120.200	20.0	Too steep
1.042	2.890	3.0	0.885	38536.080	110.754	45389.520	120.200	-31.8	No
1.042	2.890	3.5	0.609	26546.709	91.924	45389.520	120.200	-12.4	No

Table 8: Top surface area and side slope

17.3 Selection of primary outlet device

At the top of the live storage volume, this pond will have 2 ft of stage and 1.85 acres of maximum pond area.

According to Table 6.9 to 6.11 in Construction Site Erosion and Sediment Controls, the 60° V-notch Weir requires at least 1.4 acres of pond surface at 2 feet of stage in order to

provide about 90% control of sediment. The 45° V-notch Weir will require 1.0 acres, while the 90° V-notch Weir would require 2.5 acres. None of the rectangular weirs can be suitable, as the smallest 2 ft weir requires at least 2.6 acres at 2 feet of stage. The 60° weir is closest to the area available and is therefore selected for this pond. Another possible outlet structure would be an 18" drop tube structure which requires at least 1.1 acres (Pitt, Clark, & Lake, 2007).

17.4 Sacrificial drainage volume

The pond water surface is 1.04 acres. With a 3 ft dead storage depth to minimize scour, the surface area at the top of the sediment storage zone (and the bottom of the scour protection zone), will be about 0.88 acres with a 30% underwater slope. Table 9 shows the calculation of the top sediment storage area.

Surface Area (acres)	Volume (acre-ft)	Depth (ft)	Top Sediment Storage Area (acres)	Storage	Top Sediment Storage Radius (ft)	Area (ft ²)	Surface Radius (ft)	Slope (%)
1.042	2.877	3.0	0.876	38151.319	110.200	45389.520	120.200	30.0

Calculate the sediment loss for the complete construction period for the site area draining to the pond. The sediment loss for different phases of the construction period is calculated at the previous analysis using the RUSLE equation. The calculated amount of dirt is 5014.43 tons for the 235 days of total project time which has a total area of 63.22 acres. The sediment volume is about 5114.72 yd³, or 3.17 acre-ft. The sacrificial storage zone can be about 4 ft deep which will have the bottom pond area of about 0.71 acres with a side slope of 36%. Table 10 shows the calculation of the bottom area and a side slope.

Table 10: Bottom area and side slope

Top Sediment Storage Area (acres)	Volume (acre-ft)	Depth (ft)	Bottom Area (acres)	Bottom Area (ft ²)	Bottom Radius (ft)	Top Sediment Storage Area (ft ²)	Top Sediment Storage Radius (ft)	Slope (%)	Accept?
0.876	3.170	3.0	1.237	53905.481	130.991	38151.319	110.200	-14.4	No
0.876	3.170	3.5	0.936	40754.510	113.897	38151.319	110.200	-94.7	No
0.876	3.170	4.0	0.709	30891.281	99.161	38151.319	110.200	36.2	Yes
0.876	3.170	4.5	0.533	23219.881	85.972	38151.319	110.200	18.6	No
0.876	3.170	5.0	0.392	17082.761	73.740	38151.319	110.200	13.7	No
0.876	3.170	5.5	0.277	12061.481	61.962	38151.319	110.200	11.4	No

17.5 Selection of emergency spillway

The purpose for the pond is only a temporary storage of a runoff during the construction period. The design runoff for the emergency spillway is 50 year storm event. The design flow rate is calculated at the previous analysis using Win TR55 and the rate is 273.24 $\rm ft^3/s$ at 12.13 hrs later. The emergency spillway will be a rectangular weir. At the one foot of stage for this weir plus the spillway, the 60° V-notch weir would have 3 ft of stage in total. The V-notch weir will discharge 28 $\rm ft^3/s$ at this stage. Therefore, the rectangular weir will need to handle 245.24 $\rm ft^3/s$. The rectangular weir is calculated as follows.

$$L_w = \frac{q_o}{3.2 \times H_w^{-1.5}}$$

where, q_0 = desired ourflow rate, ft³/s L_w = length of a rectangular weir, ft H_w = stage, ft

The selected rectangular weir has a length of 76.64 ft and the stage of 1.0 ft. Table 11 describes the calculation of an emergency spillway.

Table 11: Emergency spillway

H	w (ft)	Total Discharge (ft ³ /s)	60° Vnotch Discharge (ft ³ /s)	q_0 (ft ³ /s)	L _w (ft)	Accept?
	1.0	273.240	28	245.240	76.638	Yes
	2.0	273.240	46	227.240	25.107	No
	3.0	273.240	81	192.240	11.561	No

Keeping the slope of 5% from the water quality storage, the top area of the emergency storage is 2.34 acres. The top area of the detention pond is 2.89 acres, considering 1.0 feet of freeboard above the maximum expected water level and a slope of 5%.

17.6 Final pond profile

Table 12 describes the pond profile and Figure 15 shows the corresponding drawing.

Zone	Depth (ft)	Pond Depth from the Bottom (ft)	Surface Area at Depth (acres)	Pond Storage Below Elevation (acre-ft)	Pond Slope Between Elevations (%)
Bottom	0	0	0.71	0	-
Sediment Storage	4	4	0.88	3.18	36
Scour Protection	3	7	1.04	2.88	30
Water Quality Live Storage	2	9	1.85	2.89	5
Emergency Spillway	1	10	2.34	2.10	5
Freeboard	1	11	2.89	2.62	5

Table 12: Pond final profile

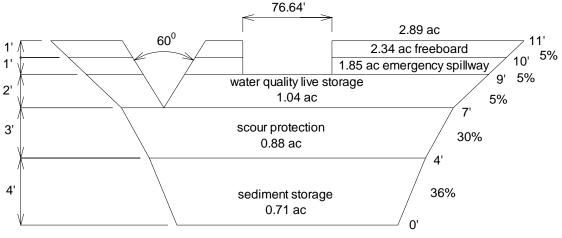


Figure 15: Pond final profile

18.0 Filter fence design

The filter fence is expected to remove maximum 50 % of suspended solids. The following section describes the design of filter fences for the site. The fence will be installed all side and down slopes areas.

18.1 Location and type of the fence

The site has a relatively high slope at the edge of the construction site where the fence is planed to install. Type "A" silt filter fences are used at all side slopes and down slope edges of the construction site. Figure 6 describes the location of the fence which is shown in the green line in the figure.

18.2 Expected silt fence performance for Phase 1 Improvement

The first phase improvement has been started from December 15th 2006 to May 3rd 2007 which includes the 4 active construction areas and 7 undisturbed areas including the site for Phase 2 improvement. The total soil loss on the site for this period was estimated at the previous analysis and it is 3313 tons. After the installation of Type "A" silt filter fence, the estimated soil loss is 1657 tons. The Table 13 shows the soil runoff for the phase 1 improvement with and without the fence

	Phase 1 Improvem	ent Soil R	unoff (December 15	, 2006-May 3, 2	2007)	
	Description	Area (ac.)	Unit Area Soil Loss (tons/acres/period)	Soil Loss Without Fence (tons/period)	Type of the Fence	Soil Loss With Fence (tons/period)
Α	Undisturbed	2.01	0.112	0.22	-	0.22
В	Undisturbed	3.04	0.063	0.19	-	0.19
С	Undisturbed	9.13	0.094	0.85	-	0.85
D	Undisturbed	3.14	0.008	0.03	A	0.01
E1	Active	6.11	173.565	1060.48	A	530.24
E2	Active	9.17	166.692	1528.57	Α	764.28
F	Active	2.37	138.852	329.08	A	164.54
G	Active	11.59	33.756	391.23	Α	195.62
Н	Phase 2	10.11	0.089	0.90	Α	0.45
1	Phase 2	1.31	0.282	0.37	Α	0.19
12	Phase 2	5.24	0.115	0.60	А	0.30
				2040.50		4050.00
total		63.220		3312.52		1656.90

 Table 13: Phase 1 soil runoff with and without the fence

18.3 Expected silt fence performance for Phase 2 Improvement and Campus and Hackberry X-section

Site is currently the second phase improvement and it has been started from May 14th 2007 to July 27th 2007 which includes the 4 active construction areas and 7 undisturbed areas including the site completed during the phase 1 improvement. The total soil loss on the site for this period was estimated in 1701 tons at the previous analysis. After the installation of Type "A" silt filter fence, the estimated soil loss is 851 tons. The Table 14 shows the soil runoff calculation result with and without the fence.

Table 14: Phase 2 Improvement and Campus & Hackberry X-Section soil runoff with and without the fence

Phase 2 Improv	Phase 2 Improvement and Campus & Hackberry X-Section Soil Runoff (May 14, 2007-July 27, 2007)									
	Description	Area (ac.)	Unit Area Soil Loss (tons/acres/period)	Total Area Soil Loss (tons/period)	Type of the Fence	Soil Loss With Fence (tons/period)				
Α	Undisturbed	2.01	0.100	0.20	-	0.20				
В	Undisturbed	3.04	0.056	0.17	-	0.17				
С	Undisturbed	9.13	0.084	0.77	-	0.77				
D	Active	3.14	7.176	22.53	A	11.27				
E1	Completed	6.11	0.056	0.34	Α	0.17				
E2	Completed	9.17	0.069	0.63	A	0.32				
F	Completed	2.37	0.029	0.07	Α	0.03				
G	Completed	11.59	0.039	0.46	Α	0.23				
Н	Active	10.11	79.560	804.35	Α	402.18				
11	Active	1.31	253.247	331.75	Α	165.88				
12	Active	5.24	102.960	539.51	Α	269.76				
total		63.220		1700.79		850.96				

18.4 Expected silt fence performance for after active construction and all land covered

The soil runoff calculation is for the construction of July 30th 2007 to August 6th 2007. The entire site is covered after the completion of the construction. The total soil loss on the site for this period was estimated in 1.12 tons which is analyzed previously. After the installation of Type "A" silt filter fence, the estimated soil loss is 0.71 tons. Table 15 shows the soil runoff calculation result with and without the fence.

Table 15: After active construction and all land covered soil runoff with and without the fence

After Active	e Construction and	All Land	Covered Soil Runoff	(July 30, 2007	-August 6,	2007)
	Description	Area (ac.)	Unit Area Soil Loss (tons/acres/period)	Total Area Soil Loss (tons/period)	Type of the Fence	Soil Loss With Fence (tons/period)
Α	Undisturbed	2.01	0.027	0.05	-	0.05
В	Undisturbed	3.04	0.015	0.05	-	0.05
С	Undisturbed	9.13	0.023	0.21	-	0.21
D	Completed	3.14	0.003	0.01	A	0.00
E1	Completed	6.11	0.015	0.09	A	0.05
E2	Completed	9.17	0.019	0.17	Α	0.09
F	Completed	2.37	0.008	0.02	Α	0.01
G	Completed	11.59	0.011	0.12	A	0.06
Н	Completed	10.11	0.016	0.16	A	0.08
1	Completed	1.31	0.018	0.02	Α	0.01
12	Completed	5.24	0.041	0.22	Α	0.11
total		63.220		1.12		0.71